- 1. Evaluate the line integral $\oint_C y \, dx x \, dy$ where C is the circle centered on the origin of radius 4 in two ways,
 - (a) directly using $\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$,

(b) and using Green's Theorem.

2. Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field $\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$ and C is the arc of the curve $y = \cos x$ from $(\pi/2,0)$ to $(-\pi/2,0)$ and then the line segment from $(-\pi/2,0)$ to $(\pi/2,0)$.