Math 2110Q - Multivariable Calculus
Name:

1. Evaluate the line integral $\oint_{C} y d x-x d y$ where $C$ is the circle centered on the origin of radius 4 in two ways,
(a) directly using $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$,
(b) and using Green's Theorem.
2. Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for the vector field $\mathbf{F}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$ and $C$ is the arc of the curve $y=\cos x$ from $(\pi / 2,0)$ to $(-\pi / 2,0)$ and then the line segment from $(-\pi / 2,0)$ to $(\pi / 2,0)$.
