1. Find the Jacobian of the transformations:
(a) $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$.
(b) $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$.
2. Find the image of the following sets under the given transformations, draw them out.
(a) $R=$ the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$ under the change of variables $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$.
(b) $S=$ is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$ under the change of variables $x=$ $\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$. (Warning: don't muck it up, the answer is nice).
3. Calculate the following integrals using the transformations given:
(a) $\iint_{R}(4 x+8 y) d A$ where R is the region from 2.a, using the transformations from 1.a.
(b) $\iint_{S}\left(x^{2}-x y+y^{2}\right) d A$ where S is the region from 2.b, using the transformations from 1.b. (Hint: You can be clever here and use a second change of coordinates to make this easier).
