1. Evaluate $\iiint_{E} z d V$ where E is enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
2. Set up but do not evaluate $\iiint_{E} x d V$, where E is enclosed by the planes $z=0$ and $z=x+y+5$ and by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
3. Set up but do not evaluate an expression for the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
4. Set up but do not evaluate $\iiint_{E} x^{2} d V$ where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$ and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
