Math 2110Q - Multivariable Calculus Name:

1. Use a Riemann sum to estimate the value of $\iint_R (1-xy^2) dA$ where $R = [0,4] \times [-1,2]$ with m = 2, n = 3. Take the sample points to be the upper left corners of the rectangles.

2. Calculate the iterated integral

 $\int_{-1}^{2} \int_{0}^{4} (1 - xy^2) dx \, dy.$

- 3. Express the following regions D as a region of type I and also as a region of type II. Then evaluate the double integral in two ways.
 - (a) $\iint_D x dA$, where D is bounded by y = x, y = 0, x = 1.

(b) $\iint_D xy dA$, where D is enclosed by the curves $y = x^2$, y = 3x.