1. Use a Riemann sum to estimate the value of $\iint_{R}\left(1-x y^{2}\right) d A$ where $R=[0,4] \times[-1,2]$ with $m=2, n=3$. Take the sample points to be the upper left corners of the rectangles.
2. Calculate the iterated integral

$$
\int_{-1}^{2} \int_{0}^{4}\left(1-x y^{2}\right) d x d y
$$

3. Express the following regions D as a region of type I and also as a region of type II. Then evaluate the double integral in two ways.
(a) $\iint_{D} x d A$, where D is bounded by $y=x, y=0, x=1$.
(b) $\iint_{D} x y d A$, where D is enclosed by the curves $y=x^{2}, y=3 x$.
