1. Find an equation of the tangent plane to the surface $z=\frac{x}{y^{2}}$ at the point $(-4,2,1)$.
2. Explain why the function is differentiable at the given point. Then find the linearization $L(x, y)$ of the function at that point.

$$
\begin{equation*}
f(x, y)=1+x \ln (x y-5) \tag{2,3}
\end{equation*}
$$

3. Use the chain rule to find $\frac{d z}{d t}$ for

$$
z=f r a c x-y x+2 y, x=t^{2}, y=2 t-1 .
$$

4. Find $\frac{d z}{d t}$ of the above function by first substituting for x and y in the equation of z.
5. Use the chain rule to compute $\frac{\partial z}{\partial u}$ where

$$
z=x^{4}+x^{2} y, \quad x=s+2 t-u, \quad y=s t u^{2}
$$

when $s=4, t=2, u=1$.

