1. Find the derivative of $\mathbf{r}(t)=\frac{1}{1+t} \mathbf{i}+\frac{t}{1+t} \mathbf{j}+\frac{t^{2}}{1+t} \mathbf{k}$.
2. Find the parametric equation for the tangent line to the curve with the given parametric equation at the specified point:

$$
x=e^{t}, y=t e^{t} z=t e^{t^{2}}(1,0,0) .
$$

3. Find the length of the curve $\mathbf{r}(t)=12 t \mathbf{i}+8 t^{3 / 2} \mathbf{j}+3 t^{2} \mathbf{k}$ for $0 \leq t \leq 1$.
4. Let $C$ be the curve of intersection of the parabolic cylinder $x^{2}=2 y$ and the surface $3 z=x y$. Find the exact length of $C$ from the origin to the point $(6,18,36)$.
(Hint: Let $x=t$ to find the equation of the curve.)
