1. Use cross sections of the form $z=k, x=0$, and $y=0$ to show that $x^{2}+y^{2}=z^{2}$ is a cone.
2. Show through substitution that the curve with parametric equations $x=t \cos t, y=t \sin t, z=t$ lies on the above cone. Try to sketch the curve.
3. Find the limit

$$
\lim _{t \rightarrow 0}\left(e^{-t} i+\frac{\sin t}{t} j+\left(-1+3 t^{2}\right) k\right) .
$$

4. At what points (there are two) does the curve $\mathbf{r}(t)=t i+\left(6 t-t^{2}\right) k$ intersect the paraboloid $z=x^{2}+y^{2}$?
