Name:

Test 2 - Practice Questions

- 1. Give a definition of the following terms:
 - (a) Vector space
 - (b) Subspace
 - (c) span{ $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ }
 - (d) NulA
 - (e) ColA
 - (f) KernelL (L a linear transformation)
 - (g) ImageL
 - (h) RowA
 - (i) dim V
 - (j) basis of V
 - (k) spanning set of V
 - (l) rank A (for a matrix A)
 - (m) nullity A
 - (n) coordinate vector of \vec{x} relative to a basis $\mathcal{B} = \{\vec{b_1}, \dots, \vec{b_n}\}$
 - (o) Eigenvalue of A
 - (p) Eigenvector of A
 - (q) Eigenspace corresponding to λ
 - (r) Characteristic polynomial of A
 - (s) Multiplicity of an eigenvalue
 - (t) Similar matrices
 - (u) Diagonalizable

- 2. Give the definition of the following vector spaces. Include what $\vec{0}$ is in each space.
 - (a) \mathbb{P}_3
 - (b) \mathbb{R}^5
 - (c) $M_{3,2}$
 - (d) R^+
- 3. Determine which vector spaces each set is a subset of. Then determine whether or not each subset is a subspace of that vector space.

(a)
$$W = \left\{ \begin{bmatrix} a & 1 \\ b & -a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

(b)
$$H = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ a & b & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

(c)
$$W = \left\{ \begin{bmatrix} 2x+y \\ -x \\ y-z \end{bmatrix} : x, y, z \in \mathbb{R} \right\}$$

- (d) $H = \{ all polynomials of degree \leq 2 of the form <math>a + bt^2$ for some $a, b \in \mathbb{R} \}$
- (e) $W = \{ all polynomials of degree \leq 3 with rational coefficients \}$

(f)
$$H = \text{Col } A$$
 where $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$

(g) $W = \operatorname{Nul} A$ with the same A given above

- (h) $H = \operatorname{Row} A$ with the same A given above
- (i) $W = \{ \text{ all even positive integers in } \mathbb{R} \}$ as a subset of \mathbb{R}^+ .

(j)
$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x, y \in \mathbb{R} \text{ and } x + y = 0 \right\}$$

(k) $W = \left\{ \begin{bmatrix} x+y \\ y-1 \\ x+2y \end{bmatrix} : x, y \in \mathbb{R} \right\}$
(l) $H = \left\{ \begin{bmatrix} t \\ -t \\ t \\ -t \\ 2s \end{bmatrix} : t, s \in \mathbb{R} \right\}$

(m) $W = \{ all polynomials of degree \leq 2 whose coefficients add up to 0 \}$

(n) $H = \{$ all polynomials of degree ≤ 2 whose coefficients add up to 1 $\}$

- 4. Determine a basis for each subspace in the previous question. Determine the dimension of each subspace.
- 5. For each of the given matrices, find a basis for ColA, NulA, and RowA. Find the rank of A and nullity of A in each case.

(a)
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & -2 & -2 \end{bmatrix}$
(d) $A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \\ 1 & -1 \\ 2 & -4 \end{bmatrix}$

6. For each vector space V and basis \mathcal{B} of V, determine the coordinate vector $[\vec{x}]_{\mathcal{B}}$ for the given vector \vec{x} . (a) $V = \mathbb{R}^2$, $\mathcal{B} = \left\{ \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} -1\\ 1 \end{bmatrix} \right\}, \vec{x} = \begin{bmatrix} 4\\ 13 \end{bmatrix}$.

(b)
$$V = \mathbb{R}^3$$
, $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\3 \end{bmatrix} \right\}, \vec{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

(c)
$$V = \mathbb{P}^1$$
, $\mathcal{B} = \{1 + t, 1 - t\}$, $\vec{x} = 3 + 2t$.

(d)
$$V = \mathbb{P}^2, \mathcal{B} = \{1, t - t^2, t\}, \vec{x} = 2 + t + t^2.$$

(e)
$$V = M_{2,2}, \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}, \vec{x} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}.$$

- 7. If A is a 4×3 matrix, and rankA=2. What is the dimension of NulA?
- 8. If A is a 2×6 matrix, what is the maximum rank of A? What is the minimum nullity of A?
- 9. Find the characteristic equation, eigenvalues, and eigenspaces corresponding to each eigenvalue of the following matrices:

 $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 4 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

10. Which of the following vectors are eigenvectors of the matrix:

(a)
$$\begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 4 \\ 1 & 0 & 3 \end{bmatrix}$$

(a) (b) (c)
$$\begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$

11. Diagonalize the following matrices, if possible:

(a)
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

(b) $\begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$
(c) $\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$

- 12. For each matrix A that was diagonalizable from the previous question, find a formula for A^k . That is, find a single matrix whose entries are formulas in terms of k that determines A^k .
 - i.e.

$$\begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix}^k = \begin{bmatrix} -3 \cdot (-3)^k + 4 \cdot (-2)^k & 6 \cdot (-3)^k - 6 \cdot (-2)^k \\ -2 \cdot (-3)^k + 2 \cdot (-2)^k & 4 \cdot (-3)^k + -3 \cdot (-2)^k \end{bmatrix}$$

13. Find the eigenvalues of $\begin{bmatrix} 1 & k \\ 2 & 1 \end{bmatrix}$ in terms of k. Can you find an eigenvector corresponding to each of the eigenvalues?