Name:

Test 2 - Practice Questions

1. Give a definition of the following terms:
(a) Vector space
(b) Subspace
(c) $\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$
(d) $\operatorname{Nul} A$
(e) $\operatorname{Col} A$
(f) Kernel L (L a linear transformation)
(g) Image L
(h) Row A
(i) $\operatorname{dim} V$
(j) basis of V
(k) spanning set of V
(l) $\operatorname{rank} A$ (for a matrix A)
(m) nullity A
(n) coordinate vector of \vec{x} relative to a basis $\mathcal{B}=\left\{\overrightarrow{b_{1}}, \ldots \overrightarrow{b_{n}}\right\}$
(o) Eigenvalue of A
(p) Eigenvector of A
(q) Eigenspace corresponding to λ
(r) Characteristic polynomial of A
(s) Multiplicity of an eigenvalue
(t) Similar matrices
(u) Diagonalizable

Solution: Look in the book's index to find each term
2. Give the definition of the following vector spaces. Include what $\overrightarrow{0}$ is in each space.
(a) \mathbb{P}_{3}

Solution: All polynomials of degree ≤ 3. The zero vector is the polynomial: 0 .
(b) \mathbb{R}^{5}

Solution: Column vectors with 5 entries from the real numbers. $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(c) $M_{3,2}$

Solution: All 3 by 2 matrices with entries in the real numbers. $\overrightarrow{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$.
(d) R^{+}

Solution: All positive real numbers where $a \oplus b=a \cdot b$ and $c * a=a^{c}$. The zero vectors is: $\overrightarrow{0}=1$.
3. Determine which vector spaces each set is a subset of. Then determine whether or not each subset is a subspace of that vector space.
(a) $W=\left\{\left[\begin{array}{cc}a & 1 \\ b & -a\end{array}\right]: a, b \in \mathbb{R}\right\}$

Solution: $W \subseteq M_{2,2}$, not a subspace since $\overrightarrow{0} \notin W$.
(b) $H=\left\{\left[\begin{array}{lll}0 & 0 & 0 \\ a & b & c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$

Solution: $H \subseteq M_{2,3}$. Yes it is a subspace. A basis is $\left\{\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$
(c) $W=\left\{\left[\begin{array}{c}2 x+y \\ -x \\ y-z\end{array}\right]: x, y, z \in \mathbb{R}\right\}$

Solution: $W \subseteq \mathbb{R}^{3}$. Yes it is a subspace. A basis is $\left\{\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]\right\}$
(d) $H=\left\{\right.$ all polynomials of degree ≤ 2 of the form $a+b t^{2}$ for some $\left.a, b \in \mathbb{R}\right\}$

Solution: $H \subseteq \mathbb{P}_{2}$. Yes it is a subspace. A basis is $\left\{1, t^{2}\right\}$.
(e) $W=\{$ all polynomials of degree ≤ 3 with rational coefficients $\}$

Solution: $W \subseteq \mathbb{P}_{3}$. No it is not a subspace, it is not closed under scalar multiplication.
(f) $H=\operatorname{Col} A$ where $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 0 & 1\end{array}\right]$

Solution: $H \subseteq \mathbb{R}^{3}$. Yes it is a subspace
(g) $W=\operatorname{Nul} A$ with the same A given above

Solution: $W \subseteq \mathbb{R}^{2}$. Yes it is a subspace
(h) $H=$ Row A with the same A given above

Solution: $H \subseteq \mathbb{R}^{2}$. Yes it is a subspace
(i) $W=\{$ all even positive integers in $\mathbb{R}\}$ as a subset of \mathbb{R}^{+}.

Solution: $W \subseteq \mathbb{R}^{+}$. No it is not a subspace, $\overrightarrow{0} \notin W$.
(j) $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x, y \in \mathbb{R}\right.$ and $\left.x+y=0\right\}$

Solution: $H \subseteq \mathbb{R}^{2}$. Yes it is a subspace. A basis is $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$.
(k) $W=\left\{\left[\begin{array}{c}x+y \\ y-1 \\ x+2 y\end{array}\right]: x, y \in \mathbb{R}\right\}$

Solution: $W \subseteq \mathbb{R}^{3}$. No it is not a subspace since $\overrightarrow{0} \notin W$.
(l) $\left.H=\left\{\begin{array}{c}t \\ -t \\ t \\ -t \\ 2 s\end{array}\right]: t, s \in \mathbb{R}\right\}$

Solution: $H \subseteq \mathbb{R}^{5}$. Yes it is a subspace.
(m) $W=\{$ all polynomials of degree ≤ 2 whose coefficients add up to 0$\}$

Solution: $W \subseteq \mathbb{P}_{2}$. Yes it is a subspace. A basis is $\left\{1-t, 1-t^{2}\right\}$.
(n) $H=\{$ all polynomials of degree ≤ 2 whose coefficients add up to 1$\}$

Solution: $H \subseteq \mathbb{P}_{2}$. No it is not a subspace. No zero vector.
4. Determine a basis for each subspace in the previous question. Determine the dimension of each subspace.
5. For each of the given matrices, find a basis for $\operatorname{Col} A, \operatorname{Nul} A$, and Row A. Find the rank of A and nullity of A in each case.
(a) $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{cccc}1 & -2 & 0 & 3 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & -2 & -2\end{array}\right]$

Solution:

$$
\begin{aligned}
& \operatorname{Col} A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]\right\} . \operatorname{rank} A=2, \\
& \text { nullity } A=1 .
\end{aligned}
$$

(d) $A=\left[\begin{array}{cc}2 & 1 \\ 0 & 0 \\ 1 & -1 \\ 2 & -4\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$

Solution: $\operatorname{Nul} A=\{\overrightarrow{0}\}$. nullity $A=0$, $\operatorname{rank} A=2$.

Solution:

Row $A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
$\operatorname{rank} A=3$, nullity $A=0 . \operatorname{Nul} A=\{\overrightarrow{0}\}$.
6. For each vector space V and basis \mathcal{B} of V, determine the coordinate vector $[\vec{x}]_{\mathcal{B}}$ for the given vector \vec{x}.
(a) $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\left[\begin{array}{c}2 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{c}4 \\ 13\end{array}\right]$.

Solution: $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{l}17 \\ 30\end{array}\right]$.
(b) $V=\mathbb{R}^{3}, \mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(c) $V=\mathbb{P}^{1}, \mathcal{B}=\{1+t, 1-t\}, \vec{x}=3+2 t$.

Solution: $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{l}5 / 2 \\ 1 / 2\end{array}\right]$.
(d) $V=\mathbb{P}^{2}, \mathcal{B}=\left\{1, t-t^{2}, t\right\}, \vec{x}=2+t+t^{2}$.

Solution: $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$.
(e) $V=M_{2,2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$.
7. If A is a 4×3 matrix, and $\operatorname{rank} A=2$. What is the dimension of $\operatorname{Nul} A$?

Solution: $\operatorname{dim} \operatorname{Nul} A=$ nullity $A=1$
8. If A is a 2×6 matrix, what is the maximum rank of A ? What is the minimum nullity of A ?

Solution: $\operatorname{rank} A \leq 2$, nullity $A \geq 4$.
9. Find the characteristic equation, eigenvalues, and eigenspaces corresponding to each eigenvalue of the following matrices:

$$
\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right],\left[\begin{array}{cc}
5 & 3 \\
-4 & 4
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 4 \\
0 & 3 & 0 \\
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Solution:

$\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right], \lambda=5,-2$, with corresponding eigenvectors $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-4 \\ 3\end{array}\right]$. (The eigenspaces are the span of these eigenvectors).
$\left[\begin{array}{cc}5 & 3 \\ -4 & 4\end{array}\right]$, SORRY THIS ONE HAS COMPLEX EIGENVALUES WHICH WE DID NOT LEARN. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right], \lambda_{1}=1, \lambda_{2}=0$, with corresponding eigenspaces $W_{1}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ and $W_{2}=$ $\operatorname{span}\left\{\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]\right\}$.
$\left[\begin{array}{lll}2 & 0 & 4 \\ 0 & 3 & 0 \\ 0 & 1 & 2\end{array}\right], \lambda_{1}=2, \lambda_{2}=3$, with corresponding eigenspaces $W_{1}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and $W_{2}=\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]\right\}$.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \lambda=1$, with eigenspace all of \mathbb{R}^{3} (this is the identity matrix, so it times any vector is the same as that vector).
10. Which of the following vectors are eigenvectors of the matrix:

$$
\left[\begin{array}{lll}
1 & 3 & 6 \\
2 & 1 & 4 \\
1 & 0 & 3
\end{array}\right]
$$

(a)
$\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$
(b)
$\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$
(c)

$$
\left[\begin{array}{c}
0 \\
1 \\
-5
\end{array}\right]
$$

Solution: Just check if $A \vec{x}=\lambda \vec{x}$ for some scalar λ. It turns out only $\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$ is an eigenvector, with eigenvalue 1.
11. Diagonalize the following matrices, if possible:
(a) $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
$(\lambda=1,-2)$
(c) $\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3\end{array}\right]$

Solution: (a) is not diagonalizable, the only eigenvalue of the matrix is 2 , and the eigenspace corresponding to $\lambda=2$ is span $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, and so there are not 2 linearly independent eigenvectors of this matrix. Therefore there is not a basis for \mathbb{R}^{2} made of eigenvectors of this matrix, so it is not diagonalizable.
(b) One diagonalization is as follows:

$$
\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]=P D P^{-1}
$$

where $P=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(c) is not diagonalizable. Similar to part (a), it is impossible to find a basis for \mathbb{R}^{4} of eigenvectors of this matrix.
12. For each matrix A that was diagonalizable from the previous question, find a formula for A^{k}. That is, find a single matrix whose entries are formulas in terms of k that determines A^{k}.
i.e.

$$
\left[\begin{array}{ll}
1 & -6 \\
2 & -6
\end{array}\right]^{k}=\left[\begin{array}{cc}
-3 \cdot(-3)^{k}+4 \cdot(-2)^{k} & 6 \cdot(-3)^{k}-6 \cdot(-2)^{k} \\
-2 \cdot(-3)^{k}+2 \cdot(-2)^{k} & 4 \cdot(-3)^{k}+-3 \cdot(-2)^{k}
\end{array}\right]
$$

Solution: So we only need to do this for (b). Using the diagonalization we found:

$$
\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]=P D P^{-1}
$$

where $P=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$
From our work in class see that

$$
\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]^{k}=P D^{k} P^{-1}=P\left[\begin{array}{ccc}
(-2)^{k} & 0 & 0 \\
0 & (-2)^{k} & 0 \\
0 & 0 & 1^{k}
\end{array}\right] P^{-1}
$$

Now computing the product we get:

$$
P\left[\begin{array}{ccc}
(-2)^{k} & 0 & 0 \\
0 & (-2)^{k} & 0 \\
0 & 0 & 1^{k}
\end{array}\right] P^{-1}=\left[\begin{array}{ccc}
-(-2)^{k} & -(-2)^{k} & 1 \\
0 & (-2)^{k} & -1 \\
-(-2)^{k} & 0 & 1
\end{array}\right] P^{-1}=\left[\begin{array}{ccc}
(-2)^{k} & (-2)^{k} & 0 \\
0 & (-1)^{k}(2)^{k+1} & -1 \\
(-2)^{k} & 0 & 1
\end{array}\right]
$$

13. Find the eigenvalues of $\left[\begin{array}{ll}1 & k \\ 2 & 1\end{array}\right]$ in terms of k. Can you find an eigenvector corresponding to each of the eigenvalues?

Solution: Eigenvalues: $\lambda_{1}=1-\sqrt{2 k}, \lambda_{2}=1+\sqrt{2 k}$.
Corresponding eigenvectors: $\vec{v}_{1}=\left[\begin{array}{c}-\sqrt{k / 2} \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}\sqrt{k / 2} \\ 1\end{array}\right]$.

