Test 1 - Practice Questions

1. Which of the following matrices are in row echelon form? Which are in reduced row echelon form?

$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	$ 3 \\ 3 \\ 0 $	$\begin{bmatrix} 5\\0\\0 \end{bmatrix}$,	1 0 0	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 2 \\ 0 \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$, \begin{bmatrix} 2\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 2 \\ 0 \end{array} $	$0 \\ 0 \\ 2$,	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 1	$ \begin{array}{c} 2 \\ 0 \\ 2 \end{array} $	$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$,	1))	$ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} $	$\begin{bmatrix} 1\\0\\1 \end{bmatrix},$	$\begin{vmatrix} 0\\ 1\\ 0 \end{vmatrix}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	0 0 0	0 0 0	
[1	0	0		0	0	0	1	[0	0	2_	J	0	1	2	0	Ĺ	0	0	0	1		0	1	0	

Solution: The 2nd, 3rd, and 5th are in row echelon form. The 2nd is the only one in reduced row echelon form.

2. Solve the following system of equations:

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$\begin{bmatrix} 0 & 1 & 5 & -4 \\ 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -2 \end{bmatrix}$$

Now we put this matrix into reduced row echelon form and obtain:

$$\begin{bmatrix} 1 & 0 & -17 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So since the last row gives the equation 0 = 1, this system is inconsistent.

3. Solve the following system of equations:

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$\begin{bmatrix} 2 & 0 & -6 & -8 \\ 0 & 1 & 2 & 3 \\ 3 & 6 & -2 & -4 \end{bmatrix}$$

Now we put this matrix into reduced row echelon form and obtain:

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

So we obtain the solutions $x_1 = 2, x_2 = -1, x_3 = 2$.

4. (a) Is
$$\begin{bmatrix} -1\\2\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\3 \end{bmatrix} \right\}$? What about $\begin{bmatrix} \pi\\\log_2 3\\17 \end{bmatrix}$?

Solution: We can form the matrix whose columns are our vectors:

1	3	0
2	4	$\frac{2}{3}$
0	3	3
-		_
_		_
[1	0	0
	0	
0	1	0

and put this matrix into rref:

and since there is a pivot in each row, (i.e. no row of zeros), the vectors span \mathbb{R}^3 , so both vectors must be in the span.

-1	1	3	0	π	
(b) Is $\begin{bmatrix} 2\\ 0 \end{bmatrix}$ a linear combination	n of $\begin{bmatrix} 2\\ 0 \end{bmatrix}$,	$\begin{bmatrix} 4\\3 \end{bmatrix}$,	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$? Is	$\begin{bmatrix} \log_2 3 \\ 17 \end{bmatrix}$?

Solution: By the definition of span, these vectors must be linear combinations of those three vectors.

5. Let

$$A = \begin{bmatrix} 1 & 4 & -1 \\ 1 & 5 & 0 \\ 0 & 3 & 3 \end{bmatrix}.$$
(a) Is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ in the span of the columns of A ? What about $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$?
Solution: If we put A into RREF, we see that there actually is a row of zeros, so we must check these vectors individually. First let's check $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Create the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -1 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 3 & 3 & 3 \end{bmatrix}$$
Then put it into RREF to see if there is a solution to this system of equations: We obtain:

$$\begin{bmatrix} 1 & 0 & -5 & -3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
So this system is consistent, so $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ IS in the span.

Now let's check $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$. Create the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -1 & 3 \\ 1 & 5 & 0 & 2 \\ 0 & 3 & 3 & 1 \end{bmatrix}$$

Then put it into RREF to see if there is a solution to this system of equations:

$$\begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The last row gives the equation 0=1, so this system is inconsistent. Thus, $\begin{bmatrix} 2\\1 \end{bmatrix}$ is **NOT** in the span.

(b) Is $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ a linear combination of the columns of *A*? What about $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$? **Solution:** Similar to the previous question, by the definition of span, if a vector is in the span of the columns of *A* if and only if is a linear combination of the columns of *A*. Thus, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ IS a linear combination of the columns of *A*, and $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ is **NOT** a linear combination of the columns of *A* 6. Suppose $S = \left\{ \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$. (a) Give an example of a vector in span S but not in S.

Solution: Any linear combination of vectors in S is in span S. So for instance we can take 2

 $\begin{vmatrix} 2 \\ 0 \\ 3 \end{vmatrix}$

or
$$\begin{bmatrix} 1\\2\\0\\3 \end{bmatrix} + \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$
.

(b) Give an example of a vector \mathbf{NOT} in span S.

Solution: If a vector \vec{v} is in span S, then

$$\vec{v} = c \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix} + d \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} = \begin{bmatrix} c\\2c\\0\\3c \end{bmatrix} + \begin{bmatrix} 0\\d\\d\\0 \end{bmatrix} = \begin{bmatrix} c\\2c+d\\d\\3c \end{bmatrix}$$

In particular, notice the 4th entry must be 3 times the 1st entry. So to get a vector not in the span of S, just give an example of a vector in \mathbb{R}^4 whose 4th entry is NOT 3 times its 1st entry. For example:

1 1 1

7. Find a vector \vec{x} such that

$$\begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \\ 6 & 2 & 4 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}$$

Solution: This is a matrix equation. To find the solutions, simply solve the augmented matrix:

$$\begin{bmatrix} 2 & 4 & 6 & 2 \\ 4 & 6 & 2 & 6 \\ 6 & 2 & 4 & 4 \end{bmatrix}$$

Putting it into RREF we obtain:

$$\begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & -\frac{1}{3} \end{bmatrix}$$

yielding solutions $x_1 = \frac{2}{3}, x_2 = \frac{2}{3}, x_3 = -\frac{1}{3}$. So our vector \vec{x} should be

$$\vec{x} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{bmatrix}$$

8. Calculate the following matrix products if they are defined, otherwise state they are undefined.

(a)	$\begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 1 \\ 0 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
	Solution: $\begin{bmatrix} 2\\1\\-1 \end{bmatrix}$
(b)	$\begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
	Solution: $\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$
(c)	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$
	Solution: $\begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$
(d)	$\begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$
	Solution: $\begin{bmatrix} 4 & -1 \\ 8 & 4 \end{bmatrix}$
(e)	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$
	Solution: Undefined, 2x3 times a 2x2
(f)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17 \end{bmatrix}$
	Solution: $\begin{bmatrix} 2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17 \end{bmatrix}$ note that the identity matrix times any matrix always gives back the same matrix.

9. (a) Write
$$\begin{bmatrix} 2\\2\\4 \end{bmatrix}$$
 as a linear combination of the vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$?

Solution: We wish to solve

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\4 \end{bmatrix}$$

This is a vector equation which we solve by making the matrix

and solving it. I leave that part to you. (Put into RREF)

(b) Is the set $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ linearly independent?

Solution: We need to check if there are any nontrivial solutions to:

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

We check this by making the matrix

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and seeing if there is a free variable. I leave that part to you. (Put into RREF, see if one column pertaining to a variable does not have a pivot). The answer is that there are no free variables, so the set is linearly independent.

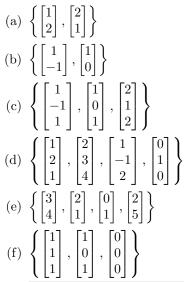
(c) Do these vectors span \mathbb{R}^3 ?

We have a theorem that helps us with this. We form the matrix

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

and check whether there is a pivot in each row (when in REF), i.e. that there are no rows of zeros. If there are no rows of zeros, then by a theorem we have discussed in class, the columns of this matrix span \mathbb{R}^3 . Here, the columns of our matrix are exactly the vectors. The solution is YES they do span \mathbb{R}^3 .

10. Determine whether the following sets are linearly independent:



Solution: The idea is to check if $c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_n\vec{v_n} = \vec{0}$ has any non-trivial solutions just like in the problem before. Key things to remember here are that

- if a set contains the zero vector, then the set is linearly dependent
- if a set contains more vectors than the dimension of the vectors (# of entries), then the set is linearly dependent

The answers are: yes, yes, no, no, no, no.

11. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the transformation defined by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x+z \\ y+z \end{bmatrix}$$

(a) Show that T is a linear transformation.

Solution: We must check the two properties that define a linear transformation:

_ _

- For any $\vec{u}, \vec{v}, T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}).$
- For any \vec{u} , c, $T(c\vec{u}) = cT(\vec{u})$.

Let us define arbitrary vectors

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}.$$

Now simply compute both sides of each equation.

$$T(\vec{u} + \vec{v}) = T\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix} \right) = \begin{bmatrix} (u_1 + v_1) + (u_3 + v_3) \\ (u_2 + v_2) + (u_3 + v_3) \end{bmatrix}$$
$$T(\vec{u}) + T(\vec{v}) = \begin{bmatrix} u_1 + u_3 \\ u_2 + u_3 \end{bmatrix} + \begin{bmatrix} v_1 + v_3 \\ v_2 + v_3 \end{bmatrix} = \begin{bmatrix} u_1 + u_3 + v_1 + v_3 \\ u_2 + u_3 + v_2 + v_3 \end{bmatrix}$$

and by rearranging we see that $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$. Do the same to check $T(c\vec{u}) = cT(\vec{u})$.

(b) Determine the standard matrix for T.

Solution: To find the standard matrix for T, we must find were T sends the standard basis of the domain of T, in this case \mathbb{R}^3 .

So, we will calculate:

$$T(\vec{e_1}) = T\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix}$$
$$T(\vec{e_2}) = T\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix} \right) = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$T(\vec{e_3}) = T\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\1 \end{bmatrix}$$

And now we form the matrix by concatenating these vectors:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

and this matrix A is the standard matrix for T. We can double check that

$$A\vec{x} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+z \\ y+z \end{bmatrix}$$

(c) Is T onto?

Solution: There is a theorem which tells you that T is onto if and only if the columns of the standard matrix of T, that is the matrix A we just found, span the range of T, in this case \mathbb{R}^2 . So we need to check is the columns of

 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

span \mathbb{R}^2 . We have a theorem that says that the columns of a matrix span \mathbb{R}^n precisely when there no row of zeros in RREF, (there is a pivot in every row). So we put A into RREF, which it conveniently already is in, and notice that A has no row of zeros, (it has a pivot in every row). Therefore, the columns of A span \mathbb{R}^2 , and therefore T is onto.

(d) Is T one-to-one?

Solution: There is a theorem which tells you that T is one-to-one if and only if the columns of the standard matrix of T, that is the matrix A we just found, are linearly independent. So we must check if the set

 $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

is linearly independent.

For more detailed steps, see solutions to previous problems on showing sets of vectors are linearly independent.

We form the matrix

1	0	1	0]
0	1	1	0

and put it into RREF. Conveniently it already is in RREF, and we see that c_3 is a free variable, and thus this set of vectors is not linearly independent, the set is linearly dependent. Thus, T is not one-to-one.

12. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1+x_2\\x_1-x_2\end{bmatrix}$$

(a) Show that T is a linear transformation.

Solution: See previous problem for idea.

(b) Determine the standard matrix for T.

Solution: See previous problem for idea, the answer is

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

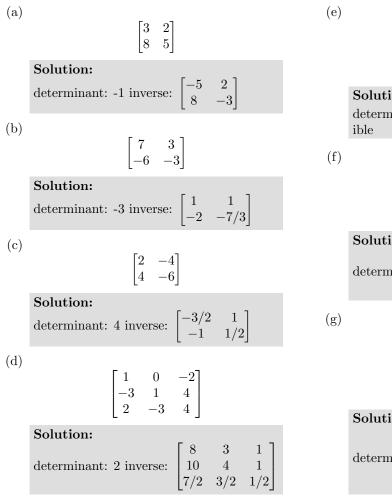
(c) Is T onto?

Solution: See previous problem for idea, the answer is yes.

(d) Is T one-to-one?

Solution: See previous problem for idea, the answer is yes.

13. Compute the determinant and calculate the inverses of the following matrices:



 $\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{bmatrix}$

determinant: 0. This matrix is not invert-

$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 4 & 2 \\ 1 & 0 & -1 \end{bmatrix}$$

Solution:			
	[1	-1/2	-1
determinant: -4 inverse:	0	1/4	1/2
	1	-1/2	-2

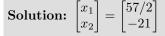
1	0	-1	2^{-1}
2	1	0	0
0	1	-1	1
$ \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} $	2	0	-2

2 0	-2	1]
4 1	4	-2
9 8	-5	
5 1	5	-3
	$ \begin{array}{ccc} 0 \\ 4 & 1 \\ 9 & 8 \\ 5 & 1 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

- 14. Compute the inverse of the following matrix:
 - $\begin{bmatrix} 2 & 3 \\ 2 & 2 \end{bmatrix}$

Solution:
$$\begin{bmatrix} -1 & 3/2 \\ 1 & -1 \end{bmatrix}$$

15. Use the above inverse to solve the following systems of equations



16. Compute the determinant of the following matrices (you may use any method you see fit).

(a)	$\begin{bmatrix} 5 & \pi \\ -3 & e \end{bmatrix}$
	Solution: $5e + 3\pi$
(b)	$\begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$
	Solution: 15
(c)	$\begin{bmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{bmatrix}$
	Solution: -36

17. Compute the determinant of the following matrices using row/column expansion.

(a)	$\begin{bmatrix} 2 & -5 & 4 \\ 0 & 1 & -2 \\ 1 & 0 & 3 \end{bmatrix}$
	Solution: 12
(b)	$\begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$
	Solution: 15
(c)	$\begin{bmatrix} 2 & 1 & 0 & 2 \\ 0 & -1 & 0 & 1 \\ -6 & 0 & 2 & 0 \\ 1 & -4 & 0 & 6 \end{bmatrix}$
	Solution: -2

18. Complete the following sentences:

- (a) A square matrix A is invertible if and only if det $A \neq 0$
- (b) If a square matrix A is singular, the columns of A are linearly dependent
- (c) If a square matrix A is invertible, the matrix equation $A\overline{x} = \overline{b}$ has a unique solution(s).
- 19. Suppose A is a square matrix such that $A^4 = 0$. Explain why A cannot be invertible.

Solution: Taking determinants on both sides gives $det(A^4) = 0$. Now, notice that

 $\det(A^4) = \det(AAAA) = \det(A)\det(A)\det(A)\det(A) = \det(A)^4$

and therefore $det(A)^4 = 0$, which is possible only if det(A) = 0. Thus, A is singular, i.e. not invertible.

20. Suppose that A is a square matrix such that $A^4 = I_n$. Explain why A is invertible.

Solution: Again, taking determinants on both sides gives $\det(A^4) = \det(I_n)$. Notice that $\det(I_n) = 1$, and so

 $\det(A)^4 = 1.$

Thus, $det(A) = \pm 1$, and in particular is not 0, so A is invertible.

- 21. Let A be a 5x5 matrix with det A = 4. What is the determinant of
 - (a) A^2

Solution: 16.

(b) 3A

Solution: $972 = 4 \cdot 3^5$. Notice that scaling the matrix by 3 scales each row by 3, and since there are 3 rows in the matrix, this changes the determinant by 3 for each row, i.e. 3^5 overall.