Name:

Test 1 - Practice Questions

1. Which of the following matrices are in row echelon form? Which are in reduced row echelon form?

$$
\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 3 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

2. Solve the following system of equations:

$$
\begin{aligned}
x_{2}+5 x_{3} & =-4 \\
x_{1}+4 x_{2}+3 x_{3} & =-2 \\
2 x_{1}+7 x_{2}+x_{3} & =-2
\end{aligned}
$$

3. Solve the following system of equations:

$$
\begin{aligned}
& 2 x_{1} \quad-6 x_{3}=-8 \\
& \begin{aligned}
x_{2} & +2 x_{3}
\end{aligned}=3
\end{aligned}
$$

4. (a) Is $\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]\right\}$? What about $\left[\begin{array}{c}\pi \\ \log _{2} 3 \\ 17\end{array}\right]$?
(b) Is $\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ a linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right] ?$ Is $\left[\begin{array}{c}\pi \\ \log _{2} 3 \\ 17\end{array}\right]$?
5. Let

$$
A=\left[\begin{array}{ccc}
1 & 4 & -1 \\
1 & 5 & 0 \\
0 & 3 & 3
\end{array}\right]
$$

(a) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in the span of the columns of A ? What about $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$?
(b) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ a linear combination of the columns of A ? What about $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$?
6. Suppose $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
(a) Give an example of a vector in span S but not in S.
(b) Give an example of a vector NOT in span S.
7. Find a vector \vec{x} such that

$$
\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 6 & 2 \\
6 & 2 & 4
\end{array}\right] \vec{x}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]
$$

8. Calculate the following matrix products if they are defined, otherwise state they are undefined.
(a) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & -1 & 1 \\ 0 & -1 & 3\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right] \cdot\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 2 & 0 \\ 4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}2 & 1 \\ 1 & -1 \\ 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & -1 & 0\end{array}\right] \cdot\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17\end{array}\right]$
9. (a) Write $\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$?
(b) Is te set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ linearly independent?
(c) Do these vectors span \mathbb{R}^{3} ?
10. Determine whether the following sets are linearly independent:
(a) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
(f) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
11. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
x+z \\
y+z
\end{array}\right]
$$

(a) Show that T is a linear transformation.
(b) Determine the standard matrix for T.
(c) Is T onto?
(d) Is T one-to-one?
12. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2} \\
x_{1}-x_{2}
\end{array}\right]
$$

(a) Show that T is a linear transformation.
(b) Determine the standard matrix for T.
(c) Is T onto?
(d) Is T one-to-one?
13. Compute the determinant and calculate the inverses of the following matrices:
(a)

$$
\left[\begin{array}{ll}
3 & 2 \\
8 & 5
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cc}
7 & 3 \tag{f}\\
-6 & -3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ll}
2 & -4 \\
4 & -6
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

(e)

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & 4 & 2 \\
1 & 0 & -1
\end{array}\right]
$$

(g)
(d)

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
2 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 \\
-1 & 2 & 0 & -2
\end{array}\right]
$$

14. Compute the inverse of the following matrix: $\left[\begin{array}{ll}2 & 3 \\ 2 & 2\end{array}\right]$
15. Use the above inverse to solve the following systems of equations

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=-6 \\
& 2 x_{1}+2 x_{2}=15
\end{aligned}
$$

16. Compute the determinant of the following matrices (you may use any method you see fit).
(a) $\left[\begin{array}{cc}5 & \pi \\ -3 & e\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$
(c) $\left[\begin{array}{cccc}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right]$
17. Compute the determinant of the following matrices using row/column expansion.
(a) $\left[\begin{array}{ccc}2 & -5 & 4 \\ 0 & 1 & -2 \\ 1 & 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$
(c) $\left[\begin{array}{cccc}2 & 1 & 0 & 2 \\ 0 & -1 & 0 & 1 \\ -6 & 0 & 2 & 0 \\ 1 & -4 & 0 & 6\end{array}\right]$
18. Complete the following sentences:
(a) A square matrix A is invertible if and only if $\operatorname{det} A$ \qquad
(b) If a square matrix A is singular, the columns of A are linearly \qquad
(c) If a square matrix A is invertible, the matrix equation $A \bar{x}=\bar{b}$ has \qquad solution(s).
19. Suppose A is a square matrix such that $A^{4}=0$. Explain why A cannot be invertible.
20. Suppose that A is a square matrix such that $A^{4}=I_{n}$. Explain why A is invertible.
21. Let A be a 3×3 matrix with $\operatorname{det} A=4$. What is the determinant of
(a) A^{2}
(b) $3 A$
