Name:

Final Exam - Practice Questions

NOTE: This (mostly) only covers material past the second exam. Please refer to previous practice questions for material from Test 1 and Test 2.

1. Define the following terms:

- Dot product
- Orthogonal projection of \vec{y} onto \vec{u}
- Inner product
- Unit vector
- Norm (of a vector)
- Orthonormal set
- Orthogonal vectors
- Orthonormal basis
- Orthogonal set
- Least-squares solution to $A \vec{x}=\vec{b}$
- Orthogonal basis
- Least-squares error

2. Rank the following vectors from greatest to least in terms of their norm:
(a)
(b)
(c)
(d)
(e)
$\left[\begin{array}{l}0 \\ 4 \\ 2 \\ 1\end{array}\right] \quad\left[\begin{array}{l}2 \\ 5\end{array}\right] \quad\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0 \\ -1\end{array}\right]$
3. For each of the above vectors, find a unit vector that points in the same direction.
4. Find a unit vector in \mathbb{R}^{2} that is orthogonal to $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
5. Determine which of the following sets are orthogonal sets:
(a)
(b)
(c)

$$
\left\{\left[\begin{array}{c}3 \\ -2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 8 \\ 7 \\ 0\end{array}\right]\right\}
$$

6. Find a non-zero vector \vec{v} in \mathbb{R}^{3} to make the following set an orthogonal set:

$$
\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right], \vec{v}\right\}
$$

Is the above set (with your selected \vec{v}) a basis for \mathbb{R}^{3} ? Why does it HAVE to be a basis?
7. Let $\vec{u}=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$. Calculate $\operatorname{proj}_{\vec{v}} \vec{u}$ for the following vectors \vec{v} :
(a) $\vec{v}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$

$$
\vec{v}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]
$$

(b)

$$
\vec{v}=\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]
$$

(c)

$$
\vec{v}=\left[\begin{array}{c}
0 \\
-1 \\
7
\end{array}\right]
$$

8. Let $\vec{u}=\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]$. Calculate $\operatorname{proj}_{\operatorname{Col} A} \vec{u}$ for the following matrices A :
(a)

$$
A=\left[\begin{array}{cc}
3 & -1 \\
1 & 2 \\
1 & 1
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{cc}
2 & 3 \\
1 & 0 \\
-1 & -3
\end{array}\right]
$$

9. For $\vec{u}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$, find a vector $\vec{v} \neq\left[\begin{array}{l}6 \\ 3 \\ 0\end{array}\right]$ so that $\operatorname{proj}_{\vec{u}} \vec{v}=\left[\begin{array}{l}6 \\ 3 \\ 0\end{array}\right]$.
10. Find the closest vector to $\vec{u}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$ in the subspace

$$
W=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right\}
$$

How far is the vector from \vec{u} ?
11. Use the Gramm-Schmidt process to find an orthogonal basis for the column space of the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 3 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

12. Find the least-squares solution to the following system of equations:

$$
\left[\begin{array}{cc}
3 & -1 \\
1 & -1 \\
0 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right]
$$

What is the least-squares error?
13. Find a linear model that best fits the following data points:

$$
(1,5),(2,4),(4,1),(5,1)
$$

14. Find a quadratic model that best fits the following data points:

$$
(1,5),(2,1),(4,1),(5,4)
$$

